SYLLABUS FOR MATHERMATICS ANNEXURE-2

Algebra:

Complex Number: Demoiver's theorem, its applications. Exponential, Sine, Cosine, Logarithm of a Complex Number.

Theory of Equations: Relation between roots and co-efficients, symmetric function of roots, transformation of equation, multiple root.

Determinant and matrix: Properties and applications.

Inequality : AM >= GM >= HM and its applications.

Set Theory:

Basic concepts, mapping, group, ring, field.

Boolean Algebra:

Basic concepts. Boolean variables and functions and their truth tables. NOT, OR and AND gates. Binary systems.

Vector:

Vector addition, Scalar and vector product. Application of vector algebra in geometrical and trigonometrical problems.

Calculus:

Differential Calculus - Sequence, series, Limit, continuity, differentiability, Successive derivatives. Rolle's theorem, Mean value theorem.

Integral Calculus - Indefinite integral, definite integral and its properties, definite integral as limit of sum. Beta and Gama functions.

Application of Calculus:

Tangent & normal, curvature, pedal equation, curve-tracing, area, rectification.

<u>Differential Equation</u>:

Linear equation, Clairaut's equation, Complementary function, particular integral of higher order. Linear equations with constant Co-efficient.

Geometry:

Translation and rotation of axes. Reduction into Canonical form. Pair of straight lines. Circle, Parabola, ellipse, hyperbola – simple properties.

Equation of straight lines in space, equation of plane.

Numerical Analysis:

Errors in numerical computation – gross error, round off, truncation error, significant figure, absolute, relative, percentage error. Operators - $\Delta \nabla E$

Difference table, Newton's forward and backward interpolation formula.

Probability:

Basic concepts, addition and multiplication rule of probabilities. Conditional probability, Bay's theorem.

Dynamics:

Motion in a straight line under variable acceleration, motion under inverse square law, motion in resisting medium. Impact of elastic bodies, loss of KE in direct and oblique impact.